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Abstract: Tank experiments were performed at different water turbidities to examine 
relationships between the beam attenuation coefficient (c) and Weibull shape parameters 
derived from LiDAR waveforms measured with the Fine Structure Underwater LiDAR 
(FSUIL). Optical inversions were made at 532 nm, within a c range of 0.045-1.52 m-1, and 
based on a LiDAR system having two field-of-view (15 and 75.7 mrad) and two linear 
polarizations. Consistently, the Weibull scale parameter or P2 showed the strongest 
covariation with c and was a more accurate proxy with respect to the LiDAR attenuation 
coefficient. 
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1. Introduction 

The understanding of the variability of optical properties in natural waters has important 
implications on mapping water quality parameters [1], productivity models [2], underwater 
communications [3], and underwater imaging [4]. Indeed, the spatial variability of inherent 
optical properties (IOPs) such as the beam attenuation coefficient (c) may be linked to 
turbidity plumes [5]. Likewise, photosynthesis and phytoplankton growth in aquatic 
environments is modulated by vertical light attenuation associated with c changes [6]. Lastly, 
c is a basic parameter for improving detection of submarine targets [7]. The remote sensing of 
c is only possible based on LiDAR (Light detection and ranging) systems [8]. Unlike passive 
optical sensors, LiDARs are able to measure characteristics of both the time-resolved back-
scatter and forward-scatter photon contributions arriving at the detector. This is particularly 
feasible when the viewing angle and/or c magnitudes are relatively small [9,10]. In this case, 
the LiDAR waveform is mainly constituted by photons encompassing one collision over the 
return path. However, this is no longer true as water turbidity increases and/or the LiDAR 
field-of-view (FOV) becomes larger due to a greater contribution of photons going through 
multiple-scattering events. 

To address these light propagation effects on IOPs inversion, different LiDAR equations 
have been proposed [9–12]. In that regard, there are two models commonly used in the 
literature: the quasi-single scattering [9,10] and the small-angle aproximation [11]. The first 
model was derived from the radiative transfer theory by assuming only one collision per 
photon. However, this premise is not strict as the attenuation term may also include a higher 
order of photon interactions. The second model is more suitable for relatively turbid waters 
and multiple scattering effects since it allows multiple forward scattering collisions at very 
small angles. 

A common approach to extract c from waveforms obtained by oceanographic LiDARs is 
the calculation of one half of the slope of the log-transformed return as a function of range 
(hereafter α) [13]. Here, the factor of one half accounts for the two-way propagation of the 
return. In general, this mathematical procedure is straightforward and based on a linear 
regression fit of log-transformed volume backscattering values measured within the 
descending portion of the path-radiance peak. Despite its simplicity, this technique may result 
in ambiguous estimates if measurements are made across a wide range of water turbidities due 
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to the variable and unknown contribution of multiple scattering. Thus, the 'slope inversion' 
may only be useful in clear waters and characterized by relatively small changes on IOPs. 

An alternative way of retrieving c from LiDAR profiles is the characterization of the FOV 
loss function factor [7,14]. This parameterization describes the detector's efficiency for 
capturing photons with respect to c and range, and can be simulated or measured under 
controlled conditions [7]. Likewise, implicit solutions to the FOV loss function factor can be 
obtained by using multiple FOVs [15]. Therefore, the determination of the FOV loss function 
factor is not a straightforward task and can only be achieved by performing customized Monte 
Carlo-based radiative transfer simulations, time-consuming tank experiments, or having a 
complex LiDAR configuration with several FOVs. 

Here, a new method to compute c from LiDAR waveforms produced by an underwater 3-
D system is presented. The optical inversion is fast and based on an empirical model derived 
from a modified Weibull function that takes into account the time variation and signal/noise 
characteristics of each pulse return. Thus, the aim of this study is to quantify the response of 
Weibull parameters to c, and compare the resulting inversions with those derived from c-α 
relationships. 

2. Data and methods 

2.1 LiDAR system 

The Fine Structure Underwater Imaging LiDAR (FSUIL) is a near-monostatic pulsed laser 
scanning system developed at Harbor Branch Oceanographic Institute [16]. The configuration 
of the orbital version includes a green (λ = 532 nm) and narrow collimated laser source with a 
divergence beam angle of 1 mrad, a 2-D scanner, and a receiver assembly with four 50 mm 
diameter telescopes (channel 1: wide-FOV and non-polarized, channel 2: wide-FOV and co-
polarized, channel 3: wide-FOV and cross-polarized, channel 4: narrow-FOV and non-
polarized). Each telescope has a bandpass filter centered at 532nm (3 nm at full width-half-
maximum, FWHM, diameter = 50 mm), a F/2 plano-convex lens, a field stop iris, and a high 
speed photomultiplier tube (PMT) detector (Hamamatsu R9880U-210). The wide and narrow 
FOVs were controlled using the fixed iris at 75.7 and 15 mrad, respectively. The source-
detector distance of channel 2 and 4 (0.157 m) is smaller with respect to that of channel 1 and 
3 (0.266 m). Each pulse has a Gaussian spatial profile, a pulse duration at FWHM of 0.5 ns, 
and an energy of 20 µJ. The scanning area contains 460 pulses and covers an area of 1.7399 
(width) x 1.5748 (height) m at 10.45 m from the detector. The scanning lines are created by 
swiping the laser beam from left to right for odd rows and viceversa at consecutive even rows. 
The angular inter-pulse separation is 0.34° and using a pulse repetition frequency (PRF) of 
500Hz, the time to complete an individual scan is 0.92 seconds. The time to save the pulse 
matrix data to file is close to 2 seconds. Therefore the time between captures is approximately 
3 seconds. 

2.2 Experimental setup 

FSUIL measurements were performed inside a water tank filled with a volume of freshwater 
of 151.42 cubic meters and specifically designed by Harbor Branch Oceanographic Institute 
for underwater optical experiments (Fig. 1). The tank’s dimensions are 6.5 x 12.5 x 2 m, and 
has two adjustable platforms on top to allow for precise deployment of instruments within the 
water volume. Extremely dark conditions are assured by having a completely light tight 
building, turning off artificial lights, and covering the surface of the water with black plastic 
spheres. The sphere cover and textured black walls and floor within the tank also work well in 
extinguishing internally scattered light, thereby creating a pseudo infinite volume for realistic 
ocean testing conditions. Before the experiments, 18 tank jets are directed downwards to 
resuspend any particles on the bottom. Likewise, potential residues resting at the bottom of 
the tank are eliminated by placing a series of filters in line (minimum pore size = 0.2 µm) and 

                                                                                     Vol. 24, No. 20 | 3 Oct 2016 | OPTICS EXPRESS 22672 



recirculating the water over a 24 hr period with a coagulation agent. The LiDAR 
measurements were done by placing the system in the center of the tank, near the edge and 
pointing along the major axis at a distant black target (2 m x 6 m, height x width) made of 
tightly stretched lint-free fabric, which was situated at 10.45 m with respect to the location of 
the FSUIL detector. A signal trigger is introduced to differentiate the beginning and the end of 
every waveform. The trigger is created by placing a beam sampler (Thorlabs) that splits the 
initial signal into two components. The small component (i.e., 1%) is going to the detector 
before even the transmitted pulse (i.e., the major component with 99% of the signal energy) 
leaves the housing of the LiDAR source. 

 

Fig. 1. Test tank and LiDAR experimental settings. 

The influence of water turbidity on LiDAR waveforms was assessed based on 9 
experiments where IOPs at λ = 532 nm were characterized by a mean value of c of 0.045, 
0.236, 0.442, 0.660, 0.779, 0.980, 1.160, 1.330 and 1.520 m-1, respectively. Values of a and c 
were measured using a WETLabs AC-9 instrument. Different water turbidities were obtained 
by adding a cumulative mass (i.e., 64 g per turbidity case study) of Ultra-fine Arizona Test 
Dust or ATD (Powder Technology, Inc.) to the volume of the tank. The dust was dropped 
from a bridge located near the target position. Notice that ATD in this study represents a 
model for suspended particulates. LiDAR measurements were initiated 15-25 minutes 
depending on final ATD concentration (i.e., longer at higher c values) and after adding the 
powder in order to reach a steady state ('mixed conditions') in terms of c homogeneity. The 
gain of each detector was 450 for channel 1 and 2, and 550 for channel 3 and 4. 

2.3 Waveform simulations 

The shape of the FSUIL waveforms was modeled empirically by implementing a modified 
expression of the Weibull probability distribution function (MW): 

                                                                                     Vol. 24, No. 20 | 3 Oct 2016 | OPTICS EXPRESS 22673 



 

1

1 1
1 2( ) 3 4
2 2

P
tP

P PMW t P e P
P

t
P

−
 −     = + 

 

 
 
 

 (1) 

where P1, P2, P3 and P4 correspond to the slope, scale, amplitude, and noise baseline, 
respectively. The MW slope increases as the path-radiance peak becomes more symmetrical. 
Conversely, the width of the path-radiance peak is positively correlated with the MW scale. 
By having a fixed source-detector separation and angular apertures, variations on shape 
parameters of MW functions will only depend on IOPs and the impulse functions 
corresponding to the detector and digitizer. Unlike the original Weibull parameterization, the 
new model includes two additional parameters, P3 and P4. Likewise, the ‘location’ parameter 
in this modified version is approximated to 0. The simulation of each waveform was made by 
proposing an objective function that can be adjusted until a solution is found (i.e., the sum of 
differences between measured and modeled values is minimum). The objective function has 
coefficients that are computed based on a downhill simplex algorithm. This non-linear 
optimization solver also knows as amoeba or Nelder-Mead method was implemented in 
Matlab 8.6. The maximum number of iteration was increased to 10,000 to assure a numeric 
convergence. 

2.4 Statistical analysis 

The Parameters P1, P2, P3, P4 and the LiDAR attenuation coefficient (α) were computed for 
each capture (i.e., single FSUIL scan) by choosing the pulse coinciding with the maximum 
intensity at the target location (i.e., pulse 288, 771, 1185 and 1644 for channel 1, 2, 3 and 4, 
respectively). This calculation was performed after smoothing of waveforms with a moving 
average of 10 samples. The magnitude of α was computed as half of the slope of napierian 
log-transformed and exponentially decreasing values of LiDAR backscattering as a function 
of range. The slope and its uncertainty were derived from type II linear regression models 
(i.e., independent and response variables are randomly selected). The experimental error of α 
and c estimates was quantified based on two metrics: the root mean square error (RMSE), and 
the median of unsigned relative differences (MURD): 
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where xmod and xmeas correspond to the modeled and measured optical variable, respectively, 
and ne is the number of turbidity experiments. 

For each α calculation, two points were dynamically selected from the trailing section of 
the path-radiance peak and based on the following criteria. First, the initial point or imax (i.e., 
value at an earlier time that corresponds to maximum) was found after eliminating the peaks 
corresponding to the trigger (TR) and target (TA), as shown in Fig. 2. Also, the code verifies 
for spikes using empirically-determined peak threshold, to avoid false detection of imax 
values. Spikes are detected if adjacent values to imax have a backscattering magnitude that is 
half of that observed at imax. Second, the final point or imin is computed as the first value 
above 1.5 or 3-fold the background signal (mean or maximum) of the last 15 time bins. Third, 
if the background signal is negative, then an offset is included as part of the imin detection. 
Lastly, if negative α values still occur then imin is computed as imax + 50 time bins, which 
was determined by visually inspecting the waveforms. 

Similar to α, MW parameters were obtained after eliminating the trigger and target peaks. 
The uncertainty of Weibull function parameters was quantified based on two standard errors 
(i.e., standard deviation N-0.5, where N is the number of observations) and the degree of 
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function adjustment to the experimental data was evaluated based on ni or the number of 
iterations needed to reach the numerical convergence. The presence of outliers on calculating 
α, P1, P2, P3 and P4 was determined based on a Hampel filter [17]. 

3. Results 

Unlike airborne LiDAR inversion algorithms typically applied in oceanographic applications, 
IOPs in this study are retrieved based on information derived from the whole waveform. In 
Fig. 2, examples of Weibull simulations are shown for low, intermediate and high 
concentrations of ATD across the four FSUIL channels. In this case, each LiDAR waveform 
corresponds to the arithmetic average of captures per experiment (i.e., 35, 25, and 44 scans for 
c = 0.045, 0.236 and 1.520 m−1, respectively). Also for each curve, the position of TR and TA 
is indicated at 19 and 109 ns, respectively. Notice that backscattered intensity in channel 1 
and 2 [Fig. 2(a) and 2(b)] was an order of magnitude greater than that measured in channel 3 
and 4 [Fig. 2(c) and 2(d)]. These differences are explained by the smaller common scattering 
volume of channel 4 with respect to channel 1, 2 and 3. Also, a smaller contribution of path-
radiance is expected in channel 1 with respect to channel 2 and 4 due to the longer source-
detector distance of the former receiver. 

 

Fig. 2. Measured versus modeled FSUIL waveforms. a) channel 1, b) channel 2, c) channel 3, 
and d) channel 4. c is 0.045 m−1 (red line), 0.236 m−1 (black line) or 1.520 m−1 (blue line); 
FSUIL measurements (solid lines), MW simulations (broken line), two standard errors (grey 
bars); TR and TA correspond to trigger and target positions, respectively. 

In general for all channels, the leading edge of the path-radiance peak (i.e., first major 
bump before target return) was less variable and had a higher rate of change than the trailing 
edge. However, these differences were reduced at higher turbidities resulting in more 
symmetric Gaussian shapes. Also to notice was the presence of an additional path-radiance 
peak when the water turbidity was the lowest (i.e., c = 0.045 m−1, red symbols in Fig. 2(a)). 
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This feature showed earlier than the maximum path-radiance peak, was less remarkable in 
channel 3 and 4, and tended to disappear as c increases. 

For all channels, with particular prominence in the lower attenuation cases, the peak 
associated with target-reflected photons is observed later than the path-radiance maximum 
and is still visible for the experiments made at c = 0.236 m−1. Another clear feature in all 
waveforms except those measured at the highest turbidity, which were already significantly 
attenuated, was the drastic decay of the LiDAR backscattered power after hitting the black 
backwall target. Indeed, this signal variation was almost absent at c = 1.52 m−1 due to the 
insignificant target return associated with a very strong path-length attenuation. 

Regardless of the radiometric channel, the ratio between target and path-radiance photons 
(Rt-p) was only above 1 for the clearest waters. When visibility was the greatest, the maximum 
and minimum Rt-p values were obtained by using channel 4 (14.8) and 1 (1.02), respectively 
[Fig. 2(a) and 2(d)]. By keeping the FOV fixed, better discrimination of the target was 
achieved when a cross-polarized filter (i.e., channel 3) was used (Rt-p~7) [Fig. 2(c)]. 

A comparison of α calculations as a function of water turbidity and detector type is 
depicted in Fig. 3. As expected, the best linear adjustment between α and c values was found 
with measurements obtained by channel 4 [Fig. 3(d)]. The RMSE and MURD of c estimates 
for channel 1, 2, 3 and 4 was 0.147, 0.201, 0.253, and 0.127, and 13.7, 15.4, 15.3 and 9.4%, 
respectively. For the wide FOV, the correspondence between α and c values was greater when 
the unpolarized waveforms were analyzed [Fig. 3(a), 3(b) and 3(c)]. Indeed, the difference 
between coefficients of determination (r2) as percentage was up to 16% (Table 1). 

Table 1. Statistics of α-c relationships. Linear regression model: c’ = m0 + m1 α, c’ is 
modeled c, for each FSUIL channel, the number of observations was 9, two standard 

errors are indicated between parentheses 

Channel m0 m1 r2 MURD (%) RMSE 

1 -1.09 (0.49) 13.15 (3.28) 0.904 13.7 0.147 

2 -0.37 (0.44) 6.22 (2.19) 0.820 15.4 0.201 

3 -0.85 (0.81) 11.08 (5.27) 0.715 15.3 0.253 

4 -0.21 (0.23) 4.93 (1.01) 0.928 9.4 0.127 

 
This was attributed to non-linearities of channel 2 at relatively high c values, and large 

variability around the regression line in channel 3. The range of α values for channel 1, 2, 3 
and 4 was 0.081-0.186, 0.106-0.341, 0.091-0.202, and 0.056-0.320 m−1, respectively. In 
general, the variability of α values among captures as inferred from the coefficient of 
variation (i.e., standard deviation/arithmetic average) as percentage was up to 14.6%, 28.8%, 
28.8%, and 25.2% for channel 1, 2, 3 and 4, respectively, and tended to decrease at higher 
turbidities (up to 5.1% at c = 1.520 m−1). In all cases, the error of α estimates as derived from 
FSUIL waveforms was always below 10%. 

For all channels, the regression intercept of α as function of c was greater than zero (t- 
Student = 71.1, P < 0.01) and varied between 0.065 and 0.132. However, these differences 
were only apparent as they were comparable to the experimental error of c measurements (i.e., 
~15%). Lastly, the regression slope of α as function of c and for channel 4 was 2.8-fold larger 
with respect to that computed for channel 1, 2 or 3 (Fig. 3). 
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Fig. 3. Variation of α as a function of c. a) channel 1, b) channel 2, c) channel 3, and d) channel 
4. Linear regression model (broken lines), for each datapoint, vertical bars correspond to two 
standard errors. 

The variation of FSUIL-derived Weibull parameters with respect to water turbidity is 
shown in Fig. 4. For the whole data set, the magnitude of P1 varied between 2.5 and 4.7, and 
had the largest uncertainty at relatively low water turbidities (i.e., c = 0.045-0.2 m−1) when P1 
decreased with c [Fig. 4(a)]. However, at higher water turbidities (i.e., c > 0.4 m−1), P1 
estimates had a linear and positive covariation with c. The arithmetic average of P1 per 
experiment was not substantially different among channels for c values between 0.2 and 1 
m−1. Nevertheless, a remarkable deviation characterized by smaller P1 at c > 1 m−1 was found 
for channel 3 (Fig. 4(a), green symbols). 

The parameter P2 varied between 55.8 and 149.8, and presented a large variability among 
captures in relatively clear waters [Fig. 4(b)]. In general, the arithmetic average of P2 per 
experiment was larger for channel 1 and 3 with respect to channel 2 and 4. Despite these 
differences, all P2 estimates were related to c following a non-linear and inverse behavior. To 
model these functionalities, a third-order logarithmic function was proposed: 

 ( ) ( )2 3
' log 2 log 2 log 2Oc y A P B P C P= + + +  (3) 

where c' is the c estimate and yo, A, B and C are regression parameters summarized in 
Table 2 and computed based on the Marquardt-Levenberg algorithm. 

For all cases, this mathematical expression was able to explain more than 97% of the 
regression variability, and presented the largest accuracy (RMSE = 0.041, ni = 246) when 
waveforms were detected with channel 1 (Table 2). 
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Table 2. Statistics of P2-c relationships. Non-linear regression model: c' = yo + A loge P2 + 
B (loge P2)2 + C (loge P2)3, c’ is modeled c, for each FSUIL channel, the number of 

observations was 9, two standard errors are indicated between parentheses 

Channel yo A B C MURD (%) RMSE 
1 618.47 (289.80) −396.63 (192.76) 84.95 (42.64) −6.07 (3.14) 5.3 0.041 
2 581.04 (462.60) −380.46 (316.20) 83.28 (71.90) −6.09 (5.44) 4.1 0.060 

3 620.58 (453.80) −398.14 (303.40) 85.36 (67.48) −6.11 (5.00) 4.5 0.051 

4 593.65 (629.00) −393.53 (437.00) 87.28 (101.02) −6.47 (7.78) 4.2 0.055 

 
The worst performance of Eq. (3) for predicting c was obtained with FSUIL 

measurements obtained with channel 2 (RMSE = 0.060, ni = 352). 

 

Fig. 4. Relationships between Weibull parameters and c. a) P1, b) P2, c) P3 and d) P4. 
Uncertainty bars correspond to two standard errors. 

As expected, all FSUIL waveforms were characterized by having larger path-radiance 
maximum values (i.e., P3) at higher water turbidities [Fig. 4(c)]. However, the rate of change 
of FSUIL intensity as a function of c, as inferred from the slope of the linear regression (m), 
was substantially greater for channel 2 (m = 2.33 ± 0.20, two standard errors) with respect to 
channel 1 (m = 1.30 ± 0.12), 3 (1.34 ± 0.40), and 4 (m = 1.07 ± 0.21). Another common 
pattern of all waveforms was the sigmoidal variation (i.e., a smaller rate of change at 
relatively low and high turbidities) of P3 with respect to c. This functionality was not well 
defined for channel 3 due to anomalous high backscattering at c = 0.236 m−1 (see green 
symbols). 

Noise of raw FSUIL waveforms (i.e., before moving averaging and P4 calculations) was 
not related to water turbidity and varied among channels with higher values in channel 1 (6.45 
to 8.80) and 2 (0.71 to 3.92) with respect to channel 3 (−2.75 to −1.31) and 4 (−3.46 to −2.33). 
Due to the presence of negative intensity values, an offset equal to 5 was added to each 
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waveform a priori of P4 inversions. This offset was only increased to 15 for channel 4 and the 
experiment was done with the clearest water. 

4. Discussion 

In this study, controlled experiments were performed to examine relationships between c and 
shape parameters derived from FSUIL waveforms. Strictly speaking, the validity of our 
results applied to waters with a c range of 0.045-1.52 m−1. These water turbidity conditions 
are comparable to those used for measuring volume scattering functions (VSFs) in the 
Bahamas, Southern California coast, San Diego Harbor, Mediterranean Sea, Atlantic and 
Pacific Oceans, and Lake Baikal [18, 19]. Also, the suggested c-α and c-Weibull 
functionalities are probably correct in environments of the Tyrrenean Sea, and the English 
Channel since total scattering coefficient values reported by Kopelevich’s studies are 
consistent with those computed by Petzold’s VSF [20]. 

The use of an opaque target during the tank experiments is unnecessary for field 
measurements. However, this setup was used here in order to experimentally derive the FOV, 
and to find the pulse position having the maximum intensity in the far-field for each of the 
FSUIL channels. The presence of this target is not expected to affect the characterization of 
the path-radiance since its lower reflectivity (i.e., < 0.1) and depolarization properties [21]. 
Another aspect to highlight is the way turbidity case studies were created in the lab. Unlike 
FSUIL measurements in natural waters, tank experiments were done with suspended 
particulates having uniform properties, i.e. size distribution spectrum, refractive indices, and 
morphology. Conversely, IOPs distributions of field data are expected to have a shift toward 
large-sized particles as turbidity increases. Thus, the position of the maximum path-radiance 
observed here is likely to be displaced to a longer range (i.e., a later arrival time at the 
detector) if FSUIL is deployed in such a turbid natural environment. This effect can be 
attributed to the larger contribution of small-angle forward-scattered photons, the effect of 
which is an observable delay in the arrival of the backscattering path radiance. The presence 
of aggregates during the tank experiments cannot be ruled out and might explain the existence 
of spikes and anomalous values of Weibull inversions (e.g., P3 at c = 0.236 m−1 in channel 3, 
Fig. 4(c)). 

The analysis of α at different water turbidities clearly illustrated the suitability of a 
narrow-FOV for estimating c values, and the difficulty in applying a linear model to the co-
polarized component of FSUIL measurements. Not surprising, the regression slope of c-α 
relationships had a maximum value in channel 4 as single-scattering effects dominate α. Since 
α is a variable constituted by c and Kd, and Kd or the vertically diffuse attenuation of 
downwelling irradiance is smaller than c, α functions depending on c are anticipated to have 
smaller regression slopes for wide-FOV channels (i.e., 1 to 3) as α tends to Kd due to a greater 
influence of multiple scattering [9]. 

As pointed by several studies [8, 9, 22], multiple-scattering effects are reduced when 
narrower FOVs such as the channel 4 are used. This effect explained the higher Rt-p values of 
channel 4 with respect to channel 1 in Fig. 2. This phenomenon is attributed to multiple 
photon collisions that enhance the path-radiance contribution and cause a reduction of the 
target component due to a stronger path-length attenuation of target-reflected photons. These 
changes are more remarkable in channel 1 with respect to channel 4. 

The state of polarization of backscattered energy arriving at the FSUIL detector was also 
sensitive to changes on multiple-scattering due to variations on c. Indeed, the perpendicular 
component of polarization (i.e., channel 3) allowed larger Rt-p values with respect to the 
parallel component (i.e., channel 2). These differences were attributed to the larger 
contribution of multiple-scattering when LiDAR returns were co-polarized. The greater 
vertical penetration (i.e., smaller α) of LiDAR waveforms having a cross- with respect to a co-
polarized component has been already reported for coastal waters [23]. In this case, LiDAR 
waveforms were obtained using an airborne system with a relatively narrow FOV (i.e., 17 
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mrad), and over surface waters encompassing c values between 1 and 5 m−1 (Churnside, pers. 
Comm.). 

Among all Weibull parameters under investigation, the parameter P2 was the most 
suitable for estimating c as a function of water turbidity due mainly to the simplicity of the 
inversion procedure, and weakly dependency of P2-based estimates with respect to the 
specific characteristics (e.g., transmitted power, dark current) of the LiDAR system. 

The log-transformed polynomial in Eq. (3) had an outstanding predictive ability for 
deriving c and with respect to the traditional method based on the LiDAR backscattering 
slope. In fact, the best performance of P2-c parameterizations had an unexplained regression 
variability of less than 1% and much smaller with respect to that associated with c-α 
relationships (i.e., ~7%). Also, in terms of RMSE, P2-derived c estimates were up to 3-fold 
more accurate than those derived from α-based optical inversions. Although the superiority of 
using P2 for estimating c was clearly demonstrated, the exact mechanisms explaining c-P2 
covariations were more elusive. It is suggested that as c increases, the contribution of path-
radiance inside and outside the FOV increases due to multiple-scattering. Thus, as water 
became more turbid, the peaks corresponding to the first and the second path-radiance 
components merge resulting in a narrower path-radiance distribution (i.e., smaller P2 values). 

The variation of P1 with respect to c had a dual trend showing an inverse and direct 
correspondence at relatively low (0.045-0.44 m−1) and high (> 0.44 m−1) c values, 
respectively. This complex pattern was attributed to shape modifications in the leading and 
trailing sections of the path-radiance maximum due to back-scattered and forward-scattered 
energy contributions that are originated inside (i.e., common volume backscattering) and 
outside of the FOV. In general, the proportion of photons having a multiple-scattering event is 
larger when the scattering process is initiated outside the FOV. Thus, it is suggested that P1 
variations within the c range 0.045-0.236 m−1 were mainly modulated by changes in path-
radiance maximum (i.e., second path-radiance peak mainly composed of photons coming 
from the common volume backscattering). However at higher c values, the first path-radiance 
peak (i.e., ‘early-bird’ photons originated outside of FOV and close to the laser source) 
becomes more prominent and causes an augmentation of P1 (i.e., a symmetry improvement) 
as the first and maximum path-radiance peaks start merging. This explanation is supported by 
radiative transfer modeling and experimental results based on underwater laser line scanner 
measurements obtained with a LiDAR system having a comparable near-monostatic geometry 
to FSUIL [24]. 

5. Summary 

In this investigation a novel and non-intrusive technique is proposed for estimating c based on 
LiDAR waveforms derived from FSUIL. The accuracy of P2-based models for estimating c 
was greater with respect to that typically obtained based on LiDAR backscattering slope 
inversions. Unlike α functions, the Weibull-based inversion utilizes the full waveform in order 
to calculate c. Also, another important benefit of using Weibull-derived retrievals was the fact 
that P2 can be used even if the waters under study are characterized by a variable multiple-
scattering contribution. Future studies are underway for applying this model in oceanic and 
coastal waters. Likewise, the calculation of Weibull parameters for the entire set of pulses 
(i.e., 23 x 20) per capture will allow for the first time the fast reconstruction of 2-D and 3-D 
(if FSUIL is translated or rotated) distributions of c. These results are expected to have major 
applications in aquatic ecology (eg., patchiness) and defense (e.g., identification of submarine 
objects). 
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